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Abstract. The object of the present paper is to calculate the mass and the ground-state energy 
of a polaron in a superlattice which is formed by alternate layers of materials such as GaAs 
and Ga,.,AI,As. We obtain the variations in these two quantities as a function of the 
separation between the layers and the electron concentration. The calculations are per- 
formed using the zero-point energy approach. 

1. Introduction 

The calculations of the mass and the ground-state energy of the polaron in a two- 
dimensional (2D) and quasi-:o electron gas have been reported by several workers [I- 
41. In [l-31, the effect of electron screening on the electron-phonon interaction is 
examined. It isshown that the electron screening has asignificant effect on the electron- 
phonon interaction in 2D. In a superlattice the screening effects are more complex than 
the corresponding effects in a pure ZD or 3D electron gas. In a superlattice the screening 
of the electron-lattice interaction can occur because of electrons in a single layer if the 
separation between the layers is larger than the polaron radius, and because of electrons 
in several layers if the separation is smaller. In addition, the effect of the electron 
screening on the electron-phonon interaction can be altered by selecting the electron 
concentration in each layer by adjusting the doping. Thus a superlattice provides an 
interesting system to study the effect of the electron gas on the polaronic properties. 

For our calculations we assume that the superlattice is formed by layers of a 2D 
electron gas separated by a distance a. This is an idealization of a real situation in which 
the electron wavefunction has a spread in the direction normal to the 2D plane. Since 
our main object is to study the effect of the superlattice, the assumption that each layer 
is a pure ZD electron gas is unlikely to affect the features arising from the properties of 
the superlattice. With this assumption the electrons are restricted to their own layer. 
They are, however, allowed to have a Coulomb interaction with electrons in their own 
layer as well as with electrons in other layers. We have also made the assumption that 
the electron-lattice interaction in a superlattice is the same as that found in an equivalent 
3D crystal. The assumption, also made by other workers [l-31, is reasonable since the 
ionic motion is almost the same in both the materials which form the superlattice. 

The method of calculations adopted in this paper is somewhat unconventional in the 
sense that it is not based on the use of the Fr6hlich Hamiltonian. We use the zero-point 
energy formalism which was developed earlier by Hawton and Paranjape [5] for the 
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study of the polaron in 3D and by Panat and Paranjape [3] for the ZD polaron. In this 
formalismwecalculate theself-energiesoftheelectronin the presenceandintheabsence 
of the electron-phonon interaction. The difference between the two energies provides 
the value of the electron-phonon interaction. The effect of the screening is introduced 
through the dielectric constant which contains contributions from the lattice and the 
layered electron gas. Our approach, we believe, is simpler and more direct than the 
approaches based on the Frohlich Hamiltonian. Apart from some numerical differences 
the two methods would provide similar results for the polaron mass. 

Thedetailsofourmodel aregiveninsection2, the resultsinsection3andadiscussion 
of the results in section 4, 
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2. Model 

In the zero-point energy formalism, we calculate the difference between the self-energy 
ofanelectronin the presenceand that intheabsenceoftheelectron-phononinteraction. 
The difference provides the interaction energy. 

Consider macroscopic electric fieldsE(r, w )  at point r andE(r’, w )  at point r‘. The 
two fields are connected to each other by the relation 

E(r,  w )  = J F(r,r‘, w)E(r’, 0) d’r’ (2.1) 

where the tensor F depends on the properties of the medium. In the absence of the 
medium, F is directly given by S(r - r‘). Upon taking the Fourier transform, equation 
(2.1) becomes 

E(k ,  w )  = F(k, k’, w)E(k’, w).  (2.2) 
k’ 

Equation (2.2) provides the eigenmodes of the system. The zero-point energy of these 
modes is given by Mahanty and Paranjape [6] according to 

(2.3) 

where g is the summation index which takes positive integral values starting from unity 
and the contour encloses the real axis of the complex w-plane. For linear effects it is 
sufficient to consider the g = 1 term only. If we neglect the electron-phonon interaction, 
then the zero-point energy of the system is given by equation (2.3) provided that we 
replace F by Fo which includes properties of the medium from which the effect of the 
electron-phonon interaction has been excluded. The difference AE between the two 
energies gives the self-energy of the electron due to its interaction with the lattice: 

dwTr[G(k, k’, o)] 

where G is the difference between F and F,,. The expression for G has been derived by 
Hawton and Paranjape [SI for an electron in a 3~ crystal. The derivation is long but 
straightforward. The main ideainthe derivationisasfollows. Weconsider amacroscopic 
electric field E(r, w )  at point r and find the effect of the field on the wavefunction of 
a designated electron using the first-order time-dependent perturbation theory. The 
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perturbed wavefunctionisused tocalculate theaveragevalue ofthe electricfieldE(r', w )  
at point r' using the standard quantum mechanical averaging procedure. The result 
obtained is then compared with equation (2.1). The comparison allows us to determine 
the expressions for F(r, r', w )  and F(k, k', w ) .  The effect of the medium is brought into 
the picture through the use of the dielectric constant in obtaining the average value of 
the electric field. With a suitable choice of the dielectric constant, it is possible to 
determine F and F, and hence G. The expression for G, as given by Hawton and 
Paranjape [5] for a 3D crystal, can be easily modified for a superlattice. The resultant 
expression for an electron in a superlattice is given by 

(ko,l0lexp(-ik' .r)lh",l")(K',l"lexp(ik. r)lko,lo) 
Wk".Xo - 

( k o ,  lolexp(i.r)lK', l")(K',l''lexp(-ik' .r)lk + 
w Y ~ k o  + (2.5) 

where Vis the periodic volume. In equation (2.5) the electron wavefunction in the loth 
layer is given by 

(2.6) 

where ko is the ZD wavevector of the electron in the plane of the loth layer, A is the 
periodicareaand q ( z  - loa) is the electron wavefunction in the direction normal to the 
ZD plane. A similar expression can be defined for the intermediate states of the electron. 
We choose the form of the wavefunction q ( z  - loa) such that 

( r lko , lo )  = (1/A)IIz exp(io .r) q(r - loa) 

q * ( z  - loa)q(z - t'u) = 6,01"6(z - loa) (2.7) 

so that the electron is restricted to a single layer defined by the wavefunction and that 
there is no overlap between wavefunctions belonging to different layers. Further, in 
equation (2 .5) ,  w ~ , ~ , ,  = h[(k")* - (ko)']/2m, where m is the band mass and we have 
neglected the excited states occurring in the direction normal to the za surface. It is 
important to note that in equation (2.5) the wavectors k,  and #' are associated with the 
electron states and are therefore two dimensional, but vectors k and k' in view of their 
origin are vectors in 3D. The difference between the dielectric constants occurring in 
equation (2.5) arise because of the differences in the definitions of Fo and F. 

According to Mahan [ 7 ] ,  the total dielectric constant of the medium due to all sources 
can be written as follows: 

Erot(k W )  = E ,  + ( E o  - E,)/[l + (W/O,)*I - v(k)n(k) (2.8) 

where the first term is the contribution to the dielectric constant due to the electrons of 
the atomic core of the crystal, the second term is the contribution of the vibrating lattice 
with w, as the transverse vibrational frequency, and the third term is the contribution of 
the layered electron gas. Here u(k) is the ?D Fourier transform of the Coulomb potential 
and n(k)  is the polarizability of the electron gas. We have considered the static response 
of the electron gas. The justification for its use has been given by Das Sarma and Mason 
[2] .  In our opinion the static response of the electron gas provides at least a reasonable 
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estimate of the screening, and its use is considered as a simplifying assumption. Solving 
for the inverse of the dielectric constant we get 
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1/qo1(k, W )  = (a: - W*)/E,y,(k)(w: -~w ' )  (2.9) 

w: = dPo(k)/P=(k) (2.10) 

PO = 1 - U(k)n(k)/Eo (2.11) 

where 

with 

The expressions for v(k)n(k) for the layered electron gas in a superlattice have been 
given by Das Sarma and Quinn [SI. Using their expressions allows us to write 

pi = 1 + (2me2/fi2ks,){l - (1 - (8nn/k;)]'}sinh(kga) 

j~ = 1 - v(k)n(k)/E,. 

1 + (2me2/fi2k~,){sinh(k~a)/[cosh(k~a) + cos(k,a)]} 
for [ k i  hl 

kl >8nn 
[cosh(klla) + cos(k,a)] ,I (2.12) 

where a is the distance separating the layers of the superlattice, kll is the component of 
k parallel to the 2D plane, k, is the perpendicular component and n is the electron 
concentration per unit areaofthe layer. Inequation (2.10).  isth the longitudinal optical 
frequency of the lattice and is related to W ,  by the relation oz /m:  = E ~ / E , ,  

3. Results 

We now obtain the matrix elements occurring in equation (2.5) by making use of 
the electron wavefunction defined by equations (2.6) and (2.7). On performing the 
summation over the intermediate states by utilizing the properties of the delta function, 
we can rewrite equation (2.5) as 

G(k, k', W )  = [(h)3/vl[ez/fi(W21[(k. k')/k2k'21~[1/&,l(k, W )  - 1/~&, 311 
[ l / ( O l k o + k ' I . k o  - W )  l / ( W l k o - N . k 0  + w)l6k~.ki exp[-i(k, - k;)loa] 

(3.1) 
where the intermediate states, in view of the degeneracy of the electron gas, are above 
the Fermi level. Hence Iko + k'l > kF and Iko - kl>kF where k, is the Fermi wavevector 
of the ZD electron gas. If we now take the trace of G, we get 

and @ is the angle between k, and 4. In writing equation (3.2), we have replaced k by 
-kin the term I/(w~ko-nl.xo + 0) in equation (3.1). The replacement is possible since 
the summation in equation (3.1) is over all values of k. We now substitute equation 
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(3.2) into equation (2.4), using equations (2.9) and (2.10). On performing the contour 
integration and changing the summation over k to integration we get 

The variation in k, is from --m to +m, while the variation in kll is prescribed by 
(2nn)In < kll < m. This prescription arises for two reasons: all the intermediate states 
in (2.5) are above the Fermi level, and ko is close to zero. For ko approaching zero (i.e. 
the self-energy of the electron is for those electrons which are near the ground state), 
we may expand equation (3.4) in powers of ko and consider terms in the expansion up 
to square in k$. We also write the integral in (3.4) in a dimensionless form by substituting 
x = klla, andy = kia,, where ap is the polaron radius given by the well known expression 
ap = (h/2m~,)~/*.  If we now write AE in (3.4) as 

where we have used the standard definition for the Frbhlich coupling constant 01 given 
by 

a = $(I/&- - 1 /&o) (e2 /ho~) (2moo/h)1 / z .  

We now define the polaron mass according to 

l/mPol = l/m + (1/h2)[d2(AE)/ak~] 

then 

(3.8) 

Equations (3.6) and (3.9) represent the main results of this paper. 
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Figure 1. (Am/m)(n/2n) as a function of n (the electron concentration per unit area of the 
layer) for various distances a of separation between the layers: -, a = 10 A; - - -, a = 
30 A:---- . a = W A .  

4. Disrussion 

In this paper, we have considered an ideal superlattice consisting of sheets of electron 
gas separated by a fixed distance which is defined as the lattice constant of the super- 
lattice. The electrons are allowed to move within a sheet, but electron transitions 
between the sheets are not allowed. The interaction between an electron and the 
longitudinal optical phonon modes is studied on the assumption that the interaction 
Hamiltonian is the same as in the corresponding 3D crystal. Making use of these assump- 
tions, we have studied the effect of the electron screening on the electron-phonon 
interaction. The effect of the screening on the ground-state energy and the effective 
mass of the polaron is calculated and the results are given by equations (3.6) and (3.7). 
The integrals in these two equations has been evaluated numerically and the variations 
in (Am/m)  (x/20l) and AEo/nhw, with the electron concentration per unit area of a 
layerofthesuperlatticeare showninfigures 1 and2, respectively. Ineachofthesefigures 
we have also considered three values for the separations between the layers of the 
superlattice. In the numerical calculations we have assumed the following values which 
are appropriate for the Ga,_,AI,As system: E, = 10.9, = 12.82, m/mo = 0.0665, 
where mo is the electron mass in free space, and CY = 0.07. 

The effect of the electron gas on the polaronic properties occurs in two ways. One 
effect is due to the degeneracy of the electron gas. The electron is unable to make virtual 
transitions to the intermediate states with an energy less than the Fermi energy. This 
effect puts a lower limit in the integration over k in equation (3.4). The direct effect of 
the screening on the electron-phonon interaction is contained in the factors pa and p- 
defined by equation (2.12). The combined effect of these two has been included in our 
numerical evaluations. 

If we let the electron concentration in a layer approach zero, then both expressions 
for p approach unity and the effect of the electron gas on the polaron energy vanishes. 
Putting the p-values equal to unity in equations (3.6) and (3.9), we are able to evaluate 
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Figure2. AEolmiw, asafunctionofn (theelectronconcentralion per unit areaof the layer) 
for various distances a of separation between the layers: -, n = 10 A: - - -, II = 30 A; 

, a  = 90A. 

analytically the integrals in these expressions giving (AEo/diuho,) = z/2 = 1.571 and 
(Am/m)(n/2a) = nZ/16 = 0.617. These values are in agreement with the work of 
Paranjape and Panat [4]. The numerical resultsfor (Am/m) (x /2a )  for aseparation a = 
90 8, and for n = loLo cm-2 is 0.56. This value differs from the theoretical value in which 
theeffect oftheelearongasisneglected by about 10%. Weconclude that, for thischoice 
of n and of a ,  the effect of the electron gas on the polaron mass is quite small. For the 
GaL~~l,Assystemthepolaronradiusisoftheorderof38 &theeffect ofthesuperlattice 
decreases as the separation between the layers increases beyond the polaron radius. 
This is evident from both the figures in which the difference between the two curves for 
a = 30 and a = 90 is already small and is expected to decrease further as a is increased. 

For the ground-state energy of the polaron the effect of the electron gas is still quite 
strong even at an electron concentration of 10"cm-' as is seen from figure 2.  As the 
separation between the layers is increased, the effect of the superlattice diminishes and 
the polaron properties are similar to that of a ZD polaron, On the other hand, if the 
separation between the layers is decreased, the superlattice possesses properties which 
are intermediate between those of a 2D and a 3D crystal. A superlattice, in view of the 
restricted motion of the electrons, cannot approach the properties of a 3D crystal even 
when the distance between the layers is made very small. 

We wish to comment on the limitations of the model which we have used in this 
paper. There are two main drawbacks. The first is the assumption that the superlattice 
is formed by sheets of ZD electron gas, and the second is that the electron-phonon 
interaction Hamiltonian is the same as in the corresponding 3D crystal. These objections 
are valid in most cases, since the superlattices produced in laboratories consist of 
electrons trapped in quasi-2D quantum wells which have small but finite widths. As a 
consequence the electron wavefunctionsin adjacent 1ayerscanoverlap.whichiscontrary 
to the assumption of our model. In addition, the frequencies and dispersions of the 
lattice vibrations (phonons) within the well, on the walls of the well, and in regions 
outside the well differ from each other and from their 3D behaviour. We have neglected 
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these differences. Although we recognize these limitations, we have tried to represent 
a relatively simple model in which the main emphasis is on calculating the effect of the 
screening of the electron-phonon interaction in a superlattice. To achieve simplicity, 
we have excluded factors which we think are extraneous to the main aim of the paper. 

Recently, Guo-Qiang Hai et a1 [9] and Mari and Ando [lo] have examined the 
effect of the localized phonons on the electron-phonon interaction in a quantum well. 
Neglecting the electron screening effects, Guo-Qiang Hai et a1 [9] have also made a 
comparative study of the effect of the localized phonon modes and the 3D phonon modes 
on the mass and the ground-state energy of the polaron for the GaAs/Ga,_,AI,As 
quantum well. They find that the differences in the mass and energy due to the con- 
siderations of the localized phonons and the 3D phonons decrease very rapidly as the 
width of the well is increased. Using the localized honons, these workers show that in 

phonon value by less than 10%. For the case of a finite potential well the difference 
between the two resultsvanishesat zero width, increases to a peak value at approximately 
10 8, and decreases rapidly as the width is further increased. At its peak the difference 
between thevaluesof thepolaronmassobtainedusinglocalizedand3Dphononsisabout 
10% for x = 1. Similar results also hold for the ground-state energy of the polaron. 

In our calculations we have assumed the width of the well to be zero and have used 
the 3D model for the phpons.  The effects of these two assumptions on the mass and the 
ground-state energy occur in opposite directions. As the width of the well is increased, 
the polaron mass decreases; on the other hand, replacement of the 3D phonons by the 
localized phonons produces an increase in the polaron mass. Consequently in GaAs/ 
Ga,_,AI,As, for an infinite potential well of width of about 20 8,. the polaron mass 
obtained by using the localized-phonon model is the same as the polaron mass obtained 
using the 3D phonons in a zero-width well. The effect of the localized phonons in general 
is to increase the polaron mass from its value obtained using the 3D phonons. It is not 
possible to predict with great accuracy the effect of the replacement of 3~ phonons by 
localizedphononson the resultsof thispaper, but it is reasonable toexpect that themass 
and the energyofthe polaron would be increased by about 10-20%. However, the form 
of the variation in the mass and the energy of the polaron due to the screening effect of 
the electron gas is unlikely to be affected significantly by the consideration of the 
localized phonons. 

Furthermore the bound-state energy levels in a narrow quantum well are separated 
by a sufficiently large amount that it is usually adequate to assume that only the lowest 
bound energy level is occupied by the electrons, and it is also common practice to neglect 
the virtual transitions of the electrons to the higher levels as a result of the electron- 
phonon interaction. Guo-Qiang Hai eta1 [9] have studied the effect of virtual transitions 
to all higher levels and find that for small well widths the energy and mass of the polaron 
are not significantly affected by the assumption. For the purposes of this paper the 
assumption is not serious if we restrict ourselves to superlattices with small quantum 
well widths. 

As the widthofthe barrier is decreased,additionalchangesoccurwhichare neglected 
in this paper. The electron wavefunctions in adjoining wells would increasingly overlap 
as the width of the barrier is reduced. The electron wavefunctions which we assumed to 
be restricted to a layer must be replaced by the extended electron wavefunctions in the 
direction normal to the superlattice. The proposed replacement in equations (2.5), (2.6) 
and (2.7) would affect the conclusions of this paper. We propose to study these effects 
in the future. The results of this paper are therefore restricted to superlattices in which 
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an infinite potential well of width greater than 20 8: the polaron mass differs from its 3D 
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the overlap is negligible or is sufficiently small. The energy and mass of the polaron as 
functions of electron concentration are given for superlattice separations of 10.30 and 
90 8, in figures 1 and 2. The theoretical curves for the three separation values are given 
toshow the differencespredicted by the theory for small, average and large separations. 
Thesecurves represent the results of our theory. The effect of the electron overlap would 
affect the results shown in figures 1 and 2 for the smallest separation but the results for 
the other two separations may not be significantly affected. 

Finally we wish to remark that the polaron mass is known to be measurable in ionic 
crystals to a great degree of accuracy. The major limiting factor in the measurement of 
the polaron mass is the punty of the sample. We hope that these measurements can be 
performed in a superlattice. Gal _,AI,As is not ideal for studying the superlattice effect 
on the polaron mass since the Frdhlich coupling constant in this material is small and so 
also are the polaronic effects in this material. More suitable superlattices would be those 
made with materials having a larger value of E .  
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